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MEAN CURVATURE FLOWS OF LAGRANGIAN
SUBMANIFOLDS WITH CONVEX POTENTIALS

KNUT SMOCZYK & MU-TAO WANG

Abstract
This article studies the mean curvature flow of Lagrangian submanifolds.
In particular, we prove the following global existence and convergence theo-
rem: if the potential function of a Lagrangian graph in T 2n is convex, then
the flow exists for all time and converges smoothly to a flat Lagrangian
submanifold. We also discuss various conditions on the potential function
that guarantee global existence and convergence.

1. Introduction

The mean curvature flow is an evolution process under which a sub-
manifold evolves in the direction of its mean curvature vector. It can
be considered as the gradient flow of the area functional in the space
of submanifolds. The critical points of the area functional are minimal
submanifolds.

In mirror symmetry, a distinguished class of minimal submanifolds
called “special Lagrangians” are desirable in any complex n dimensional
Calabi-Yau manifold with a parallel holomorphic (n, 0) form Ω. A spe-
cial Lagrangian is calibrated by ReΩ, which means ∗ReΩ = 1, where
∗ is the Hodge ∗ operator on the submanifold. A simple derivation
using Stokes’ Theorem shows a special Lagrangian minimizes area in
its homology class. To produce special Lagrangians, it is thus natural
to consider the mean curvature flow. We remark that the existence
of Lagrangian minimizers in Kähler-Einstein surfaces was proved by
Schoen-Wolfson[9] using variational methods.
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It is conjectured by Thomas and Yau in [17] that a stable Lagrangian
isotopy class in a Calabi-Yau manifold contains a smooth special La-
grangian and the deformation process can be realized by the mean cur-
vature flow. One of the stability condition is in terms of the range of
∗ReΩ. In [19] (see also [23]), the second author proves the following
regularity theorem:

Theorem 1.1. Let (X,Ω) be a Calabi-Yau manifold and Σ be a
compact Lagrangian submanifold. If ∗ReΩ > 0 on Σ, the mean curva-
ture flow of Σ does not develop any Type I singularity.

In particular, this theorem implies no neckpinching will occur in the
flow. We remark that without this condition, neckpinching is possible
by an example of Schoen-Wolfson [10]. It is thus of great interest to
identify initial conditions that guarantee the long-time existence and
convergence of the flow.

The mean curvature flow of Lagrangian surfaces in four-manifolds
is studied in [16] and [20] independently. The first author [16] proves
the long-time existence and smooth convergence theorem for graphs
of area preserving diffeomorphisms in the nonpositive curvature case
assuming an angle condition. In [20], the second author proves the long-
time existence for graphs of area preserving diffeomorphisms between
Riemann surfaces and uniform convergence when the diffeomorphism
is homotopic to identity (smooth convergence for spheres). This gives
a natural deformation retract of the group of symplectomorphism of
Riemann surfaces. The maximum principle for parabolic equations is
important in both papers [20] and [16]. The new ingredient in [20] is the
blow-up analysis of the mean curvature flow developed in [19]. This has
been applied to prove long-time existence and convergence theorems
for general graphic mean curvature flows in arbitrary dimension and
codimension in [21].

In this article, we prove the following global existence and conver-
gence theorem in arbitrary dimension.

Theorem A. Let Σ be a Lagrangian submanifold in T 2n. Suppose Σ
is the graph of f : Tn → Tn and the potential function u of f is convex.
Then the mean curvature flow of Σ exists for all time and converges
smoothly to a flat Lagrangian submanifold.

The potential u is only a locally defined function and the convexity
of u will be explained more explicitly in §2. The mean curvature flow
can be written locally as a fully non-linear parabolic equation for the
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potential u:

du

dt
=

1√−1 ln
det(I +

√−1D2u)√
det(I + (D2u)2)

.(1.1)

The Dirichlet problem for the elliptic version of (1.1) was solved by
Caffarelli, Nirenberg and Spruck in [1].

The general existence theorem in [21] specialized to the Lagrangian
case holds under the assumption that

∏
(1 + λ2

i ) < 4 where λ′
is are

eigenvalues of D2u. The first author proves the convexity of u is pre-
served in [15] and he also shows the existence and convergence theorem
assuming u is convex and the eigenvalues of D2u are less than one. The
method in [15] indeed implies stronger results.

The core of the proof is to get control of D2u. It is interesting that
there are two ways to interpret D2u. First we can identify it with a
symmetric two-tensor on the submanifold Σ. One can then calculate the
evolution equation with respect to the rough Laplacian on symmetric
two tensors. Applying Hamilton’s maximum principle [3] shows that
the positive definiteness of the symmetric two-tensor is preserved along
the flow. A stronger positivity gives the uniform C2 bound of u.

On the other hand, since f = ∇u, the graph of D2u = df is the
tangent space of the graph of f . Recall the Gauss map for a submanifold
assigns each point to its tangent space. It was proved in [24] that the
Gauss map of any mean curvature flow is a harmonic map heat flow and
thus any convex region of the Grassmannian is preserved along the flow.
We relate D2u > 0 to a convex region in the Grassmannian and this
also gives uniform C2 bound of u. The convergence part uses Krylov’s
C2,α estimate [7] for nonlinear parabolic equations.

Since the geometry of a Lagrangian submanifold is invariant under
the unitary group U(n), this gives other equivalent conditions to the
convexity of u that also imply global existence and convergence. This
is explained in §4.

The first author would like to thank J. Jost, S.-T. Yau, G. Huisken
and K. Ecker for many helpful discussions and suggestions. The second
author would like to thank D.H. Phong and S.-T. Yau for their constant
encouragement and support. He has benefitted greatly from conversa-
tions with B. Andrews, T. Ilmanen, R. Hamilton and J. Wolfson.
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2. Preliminaries

We first derive the evolution equation of f = ∇u from the equation
of the potential function u. For more material on the special Lagrangian
equation, we refer to Harvey-Lawson [5].

Definition 2.1. Let Ω ⊂ R
n be a domain. u : Ω × [0, T ) → R is

said to satisfy the special Lagrangian evolution equation if

du

dt
=

1√−1 ln
det(I +

√−1D2u)√
det(I + (D2u)2)

.(2.1)

det(I+
√−1D2u)√

det(I+(D2u)2)
is a unit complex number, so the right-hand side is

always real.
It is not hard to see ui = ∂u

∂xi satisfies the following evolution equa-
tion.

dui

dt
= gjkuijk(2.2)

where gjk = g−1
jk and gjk = δjk + ujlukl. Indeed, the right-hand side of

Equation (2.2) is the mean curvature form Hi = gjkhijk, i.e., the trace
of the second fundamental tensor hijk because in our local coordinates
we have hijk = uijk. It is well-known that the mean curvature form H
is closed. Locally (e.g., see Section 2.6 in [14]) H can be expressed by
the differential dα of the Lagrangian angle α = 1√−1

ln det(I+
√−1D2u)√

det(I+(D2u)2)
,

i.e., the right-hand side in (2.1). Then (2.2) follows from

d

dt
du = d

du

dt
= dα = H.

Equation (2.2) is indeed the nonparametric form of a graphic mean
curvature flow, see [25] or [21] for the derivation of the general case. The
graph of ∇u is then a Lagrangian submanifold in C

n ∼= R
n⊕R

n evolving
by the mean curvature flow. It is well-known that being Lagrangian
is preserved along the mean curvature flow, see for example [12] or
[14]. The complex structure J on C

n is chosen so that the second
summand R

n is the image under J of the first summand. Equation
(2.2) is equivalent up to tangential diffeomorphisms to the original flow.
On the other hand if Σt is a family of Lagrangian submanifolds moved
by the mean curvature flow in C

n so that each Σt can be written as a
graph over the base R

n, it is not hard to check by integration that the
potential u satisfies the special Lagrangian evolution equation locally.
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Next we explain the convex potential condition. Suppose f : Tn →
Tn is given so that the graph of f is a Lagrangian submanifold of T 2n ∼=
Tn × Tn. The tangent space of T 2n is identified with C

n ∼= R
n ⊕ R

n.
The differential df is a linear map from the first R

n to the second R
n,

so is the complex structure J . The Lagrangian condition implies the
bilinear form 〈df(·), J(·)〉 is symmetric. Therefore there is a locally
defined potential function u of f . We shall identifyD2u with the bilinear
form 〈df(·), J(·)〉.

Definition 2.2. The eigenvalues of D2u are the eigenvalues of the
symmetric bilinear form 〈df(·), J(·)〉. u is convex if 〈df(v), J(v)〉 > 0 for
any v ∈ R

n.

Therefore an eigenvalue λ of D2u satisfies df(v) = λJ(v) for some
nonzero v ∈ R

n.

3. Proof of Theorem A

Let Σ be a Lagrangian submanifold of T 2n that can be written as
the graph of the base Tn. We assume the potential u of Σ is convex.
Let Σt be the mean curvature flow of Σ and ut be the potential of Σt.
ut then satisfies the special Lagrangian evolution equation locally. We
suppress the subindex t when it is clear the quantity is time-dependent.

The proof of Theorem A is divided into three parts. First we prove
the convexity of the potential u is preserved, then we derive a C2 esti-
mate of u, at last we prove the long time existence and convergence. It
is worth noting that we do not deal with D2u directly. Instead we in-
terpret the properties of D2u in terms of the restriction of a symmetric
two-tensor to Σ.

3.1 Preserving convexity of u

First we relate the convexity of u to the positive definiteness of a sym-
metric two-tensor on Σ. Recall the tangent space of T 2n is identified
with C

n ∼= R
n ⊕ R

n and the complex structure J maps the first real
space to the second one. Let π1 and π2 denote the projection onto the
first and second summand in the splitting. Define the two-tensor

S(X,Y ) = 〈Jπ1(X), π2(Y )〉
for any X,Y ∈ C

n ∼= T (T 2n). S(X,Y ) is symmetric for any X,Y
in the same Lagrangian subspace of C

n. This is because ω(X,Y ) =
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〈J(π1(X) + π2(X)), π1(Y ) + π2(Y )〉 = 0.

Lemma 3.1. Given any compact Lagrangian submanifold F : Σ →
T 2n that can be written as a graph over the base Tn. The potential u is
convex if and only if F ∗S is positive definite.

Proof. Suppose F (Σ) is the graph of f = Tn → Tn. We identity Σ
with the base Tn and choose the embedding F (x) = (x, f(x)). df is a
linear map, df : R

n → R
n. We have dF (v) = v + df(v), π1(dF (v)) = v

and π2(dF (v)) = df(v). Therefore F ∗S becomes a symmetric two-tensor
and is the same as 〈Jv, df(v)〉 = 〈df(v), Jv〉. f has a locally defined
potential u. By Definition 2.2, the positive definiteness of F ∗S is the
same as the convexity of u. q.e.d.

Next, we prove the positivity of F ∗S is preserved using two methods.
The first method calculates the evolution equation of F ∗S and applies
Hamilton’s maximum principle; this is also proved in [15]. The second
method uses the fact that the Gauss map of a mean curvature flow
forms a harmonic map heat flow and the geometry of the Lagrangian
Grassmannian developed in [24].

3.1.1 First method: the maximum principle for tensors
We recall the general evolution equation for the pull back of a parallel
two-tensor of the ambient space from [19] (§2, Equation (2.3)).

Lemma 3.2. Let F : Σ × [0, T ) → M be a mean curvature flow in
M and S be a parallel two-tensor on M . ∇ denotes the Levi-Civita con-
nection on M . For any tangent vector of M , (·)T denotes the tangential
part in TΣ and (·)⊥ is the normal part in NΣ. Then(

d

dt
−∆

)
F ∗S(X,Y )(3.1)

= S((∇XH)T , Y ) + S(X, (∇Y H)T )

− S((∇ek
(∇ek

X)⊥)T , Y )− S(X, (∇ek
(∇ek

Y )⊥)T )

− 2S((∇ek
X)⊥, (∇ek

Y )⊥)

for any X,Y ∈ TΣ and any orthonormal basis {ek} for TΣ, where ∆ is
the rough Laplacian on two-tensors over Σ.

Now back to our setting when Σ is Lagrangian in T 2n. {Jek} forms
an orthonormal basis for NpΣ. We define the second fundamental form
by

hkij = 〈∇ek
ei, J(ej)〉.
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Thus (∇ek
ei)⊥ = hkijJ(ej) and (∇ek

J(ei))T = −hiklel. Denote

Hj = 〈H, J(ej)〉.
Thus (∇eiH)T = −Hlhijlej .

Plugging these into Equation (3.1), we derive
(

d

dt
−∆

)
S(ei, ej) = −HphiplS(el, ej)−HphjplS(ei, el)

+ hpkihpklS(el, ej) + hpkjhpklS(ei, el)
− 2hkilhkjmS(J(el), J(em)).

Recall S(X,Y ) = 〈Jπ1(X), π2(Y )〉, so
S(J(el), J(em)) = 〈Jπ1(J(el)), π2(J(em))〉.

Since Jπ1 = π2J and Jπ2 = π1J , we derive

S(J(el), J(em)) = 〈JJπ2(el), Jπ1(em)〉(3.2)
= −〈π2(el), Jπ1(em)〉 = −S(el, em).

The last step is because S(·, ·) is symmetric on any Lagrangian sub-
space.

Therefore, we obtain(
d

dt
−∆

)
Sij = (hpkihpkl −Hphipl)Slj(3.3)

+ (hpkjhpkl −Hphjpl)Sil + 2hkilhkjmSlm.

Now Hphipl−hpkihpkl = Ril is indeed the Ricci curvature on Σ. This
equation is also derived in [15]. Since hkilhkjmSlm is positive definite
if Sij is, the positivity of Sij being preserved is a direct consequence of
Hamilton’s maximum principle for tensors [3].

3.1.2 Second method: geometry of Lagrangian Grassmannian

In the following, we give another proof using the geometry of the La-
grangian Grassmannian. Let LG(n) denote the Lagrangian Grassman-
nian of all oriented Lagrangian subspaces of C

n. Let γt : Σt → LG(n)
be the Gauss map of the mean curvature flow. Recall from [24] that γt

is a harmonic map heat flow, thus any (Grassmannian) convex subset is
preserved. That Sij > 0 being preserved will follow from the following
theorem.
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Theorem 3.1. Ξ = {P ∈ LG(n) | minv∈P S(v, v) ≥ 0} is a convex
subset of LG(n) with respect to the Grassmannian metric.

Proof. Let P be an arbitrary point in the Lagrangian Grassmannian
LG(n). P represents a Lagrangian subspace in C

n and a local coordi-
nate chart near P is parametrized by S, the space of n× n symmetric
matrices of the form Z = [zij ]i,j=1...n. They represent the collection of
all Lagrangian subspaces that can be written as a graph over P . By
[27], the invariant metric on LG(n) is given by

ds2 = Tr[(I + Z2)−1dZ]2.

We choose an orthonormal basis {ei} for P , so that P = e1 ∧ · · · ∧ en ∈
LG(n). By [27], a geodesic parametrized by arc length is given as P (s)
spanned by {ei+zik(s)Jek}i=1...nsuch that Z = [zij(s)] is a n×n matrix
which satisfies the following ordinary differential equation:

Z ′′ − 2Z ′Z(I + Z2)−1Z ′ = 0.(3.4)

Note that Z = ZT for Lagrangian Grassmannians.
Now we check the convexity of Ξ. Let P be a boundary point of

Ξ, so S is nonnegative definite on P . Let v ∈ P be a zero eigenvector
of S so that S(v, v) = 0. Consider a (Grassmannian) geodesic P (s)
through P and an extension of v, vs on P (s) and let f(s) = S(vs, vs).
To check the convexity, it suffices to show for any geodesic P (s) we can
find an (arbitrary) extension vs with |vs| = 1 and f ′(0) = 0 so that
f ′′(0) < 0. We remark that an arbitrary extension of v is good enough
as the minimum function minv∈P S(v, v) is always less than or equal to
f(s) along P (s).

Denote

Sij(s) = S(ei + zik(s)Jek, ej + zjl(s)Jel)(3.5)

and

gij(s) = 〈ei + zik(s)Jek, ej + zjl(s)Jel〉 = δij + zik(s)zjk(s).

For any

vs = vi(s)(ei + zik(s)Jek),

we have
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|vs|2 = vi(s)vj(s)gij(s)(3.6)

and

f(s) = S(vs, vs) = vi(s)vj(s)Sij(s).

We recall that zij(0) = 0 and by Equation (3.4) z′′ij(0) = 0. De-
note z′ij(0) := µij ; µij is an arbitrary n × n symmetric matrix. In the
following, we calculate the derivative at s = 0.

S′
ij(0) = µikS(Jek, ej) + µjlS(ei, Jel),

S′′
ij(0) = 2µikµjlS(Jek, Jel) = −2µikµjlSkl,

g′ij(0) = 0, and g′′ij(0) = 2µikµjk.

We choose vs with (vi)′(0) = 0 so that the length |vs|2 is constant
up to first order at s = 0.

The second derivative of f can be calculated in the following.

f ′′(0) = (Sij)′′vivj + Sij(vi)′′vj + Sijv
i(vj)′′.

Since v is a zero eigenvector of S on P , Sijv
i = 0 for each j, it

follows that f ′′(0) = −2µikµjlSklv
ivj is nonpositive and the theorem is

proved. q.e.d.

3.2 C2 estimate

First we reinterpret the C2 bound of u in terms of the tensor Sij .

Lemma 3.3. Given any ε > 0, F ∗S − εg > 0 on Σ is equivalent to
a uniform bound of D2u.

Proof. To see what Sij−εgij > 0 means in terms of the eigenvalues of
D2u, we choose a particular orthonormal basis for TpΣ at a point p that
we are interested. The tangent space of Σ is the graph of df : R

n → R
n.

Recall the complex structure J is chosen so that the target R
n is the

image under J of the domain R
n. Because 〈df(·), J(·)〉 is symmetric, we

can find an orthonormal basis {ai}i=1...n for the domain R
n so that

df(ai) = λiJ(ai).
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Then

ei =

1√
1 + λ2

i

(ai + λiJ(ai))




i=1,...,n

(3.7)

becomes an orthonormal basis for TpΣ and {J(ei)}i=1,...,n becomes an
orthonormal basis for the normal bundle NpΣ.

We compute for each i,

S(ei, ei) = 〈Jπ1(ei), π2(ei)〉 = λi

1 + λ2
i

.

Now λi

1+λ2
i
> ε implies a uniform upper bound on λ′

is, the eigenvalues

of D2u. q.e.d.

We also prove the condition Sij − εgij > 0 is preserved along the
mean curvature flow using the two methods. In the first method, we
rewrite Equation (3.3) in an evolving orthonormal frame as in [4] and
obtain

(
d

dt
−∆

)
Sij = hpkihpklSlj + hpkjhpklSil + 2hkilhkjmSlm(3.8)

In the evolving orthonormal frame gij = δij , thus

(
d

dt
−∆

)
(Sij − εδij) = hpkihpkl(Slj − εδlj) + hpkjhpkl(Sil − εδil)

(3.9)

+ 2hkilhkjm(Slm − εδlm) + 4εhpkihpkj

and the result follows from the maximum principle again.
In the second method, we consider the tensor E = S − εg and set

f(s) = E(vs, vs), after a similar calculation we have

(f)′′(0) = (Eij)′′vivj + Eij(vi)′′vj + Eijv
i(vj)′′

= −2µikµjlSklv
ivj + 2εµikµjkv

ivj = −2µikµjlEklv
ivj

A similar argument shows {P ∈ LG(n) | minv∈P E(v, v) ≥ 0} is a convex
subset for any ε ≥ 0.
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3.3 Long time existence

We utilize the C2,α estimate in space and the C1,α estimate in time for
nonlinear parabolic equations by Krylov [7] or [6] (see Section 5.5) to
prove the long time existence. To apply it, we still need to check the
uniform C1 estimate for u in time and the concavity of

1√−1 ln
det(I +

√−1D2u)√
det(I + (D2u)2)

in the space of symmetric, positive definite matrices with the flat metric.
The latter can be checked using a lemma of Caffarelli, Nirenberg and
Spruck in [1] (Section 3 page 276), see also [15]. The former follows
from Equation (2.2), because du

dt = α is given by the Lagrangian angle
and it is well-known [13] that for the parametric mean curvature flow
the Lagrangian angle satisfies the evolution equation

d

dt
α = ∆α(3.10)

so that the maximum principle implies a uniform bound of du
dt .

With the C2,α bound in space and the C1,α bound in time, the
convergence now follows from standard Schauder estimates and Simon’s
theorem [11]. Equation (3.11) then implies the limit is a flat Lagrangian
submanifold.

We remark the long time existence also follows from the blow-up
analysis in [21]. By Equation (3.9) in [21] (see also Equation (2.4) in
[18]) and the positivity of λi, we obtain

(
d

dt
−∆

)
ln

√
det(I + (D2u)2) ≤ |A|2.(3.11)

We integrate this inequality against the backward heat kernel and
study the blow-up behavior at any possible singular points. The right
hand side |A|2 helps us to conclude any parabolic blow-up limit is to-
tally geodesic and long time existence follows from White’s regularity
theorem [26].

4. Other equivalent conditions

As was remarked in [22] (Section 2) and [18] (see the remark at the
end of the paper), the condition u being convex corresponds to a region
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V on the Lagrangian Grassmannian. Since the geometry of a Lagrangian
submanifold is invariant under the unitary group U(n), Theorem A
applies whenever the Gauss map of a Lagrangian submanifold lies in
a U(n) orbit of V . To be more precise, consider S as a bilinear form
defined on C

n ∼= T (T 2n), given any U ∈ U(n) we may consider SU

defined by

SU (·, ·) = S(U(·), U(·)).
Notice that JU = UJ as linear transformations on C

n. It is not hard
to see SU again defines a symmetric bilinear form on any Lagrangian
subspace. Also

S(J(X), J(Y )) = −S(X,Y )

for any X,Y in a Lagrangian subspace.
Now F ∗SU > 0 for F : Σ → T 2n implies the submanifold Σ can be

locally written as a graph over a different Lagrangian plane with a con-
vex potential function. The new Lagrangian plane is indeed the image
of the domain R

n under U . This corresponds to choosing a different
base point in the Lagrangian Grassmannian in §3.

Corollary A. Let F : Σ → T 2n be a Lagrangian submanifold.
Suppose there exists an U ∈ U(n) such that F ∗SU is positive definite on
Σ. Then the mean curvature flow of Σ exists for all time and converges
smoothly to a flat Lagrangian submanifold.

Suppose Σ is the graph of f : Tn → Tn then the condition F ∗SU > 0
can be expressed in terms of the eigenvalues of the potential function u.

Recall from [22], given any splitting of C
n, an element U ∈ U(n) can

be represented by a 2n× 2n block matrix[
P −Q
Q P

]

with

PP T +QQT = I,−PQT +QP T = 0.

Corresponding to the slitting T (T 2n) = C
n = TΣ ⊕ NΣ and the

bases (Equation (3.7))
{
ei = 1√

1+λ2
i

(ai + λiJ(ai)), Jei

}
i=1,...,n

, we have

Uei =
∑

k Pkiek +
∑

l QliJel. Then

SU (ei, ei) =
∑

k

(P 2
ki −Q2

ki)
λk

1 + λ2
k

+
∑

k

PkiQki

(
1− λ2

k

1 + λ2
k

)
.
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Therefore the positive definiteness of SU is the same as requiring the
above expression to be positive for each i. Take P = Q = 1√

2
I which

amounts to rotating each complex plane by π
4 , we obtain SU (ei, ei) =

1
2

(
1−λ2

i

1+λ2
i

)
. Therefore we have

Corollary B. Let Σ be a Lagrangian submanifold in T 2n. Suppose
Σ is the graph of f : Tn → Tn and the absolute values of the eigenvalues
of the potential function u are less than one. Then the mean curvature
flow of Σ exists for all time and converges smoothly to a flat Lagrangian
submanifold. In particular, during the evolution the absolute values of
all eigenvalues stay less than one.

That the flow preserves the property of u having eigenvalues of ab-
solute value less than one was also shown in [14], Theorem 2.6.3.
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